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Abstract  

Bragg X-ray scattering intensities are defined as 
scattering by the thermodynamic average electron- 
charge density. Purely elastic, kinematic X-ray scatter- 
ing by a target in thermal equilibrium is always larger 
than Bragg scattering. At low temperatures, the elastic 
scattering becomes Bragg scattering. For large 
molecules, such as a crystal, at ordinary temperatures 
the elastic and Bragg scattering differ in a relative sense 
by O(N-l), where N is the number of vibrational 
degrees of freedom. For most practical cases the Bragg 
scattering is essentially the same as purely elastic 
scattering of X-rays. 

Introduction 

In the past decade and a half, there has been an 
intensive effort to attempt detailed mapping of electron- 
density distributions in crystals from accurately 
measured X-ray diffraction data. Several schools and 
conferences have been held on the subject in the last 
five years and reviews have also been written (cf. Phys. 
Scr., 1977; lsr. J. Chem., 1977; Coppens & Stevens, 
1977). The reduction of the measured diffraction 
intensities to lines of constant electron density or to 
charge-density-dependent properties requires a large 
amount of physical theory. Since in X-ray scattering by 
a target in thermal equilibrium with its environment, a 
large number of quantum states of the scattering 
system are involved, statistical mechanics is called 
upon. 

Apparently, in all treatments of crystal X-ray 
diffraction the structure factor is treated as a rather 
fundamental property of the crystal. It is defined as the 
Fourier transform of the thermal-average electron 
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density in the crystallographic unit cell: 

FBragg(K)~ f p(r)e/K'rd3r, (1) 
cell 

in which p(r) is the thermal average value of the 
electron density. The integrated intensity of a Bragg 
reflexion is then related to FBragg(K ) with a variety of 
correction terms that include deviations from kinematic 
scattering theory such as absorption, extinction and 
multiple scattering and correction for thermal diffuse 
scattering. If the correction terms, the various cons- 
tants, the Lorentz and polarization factors and the 
intensity of the incident beam are absorbed into the 
integrated intensity, then a reduced intensity, /, is 
equated to (e.g. Woolfson, 1970) 

I = IFBragg(K)l 2 -- IBragg(K), (2) 

in which K - -  k I - -  k o ,  the difference between the 
wavevectors of the diffracted and incident beam 
respectively. 

In order to calculate p(r), the systems of the 
ensemble are chosen so as to replicate the thermo- 
dynamic state of the crystal. 

The electron density corresponding to the state 
Ira) of the crystal, consisting of L electrons and M 
nuclei, is given by 

pro(r) = L f ~'*~(r,o'l,x2,... XL, Q1 . . . .  QM) 

× ~m(r,t71,X2,...xL, QI,.. .QM) 

× dtTld4x2...d4xLd4Ql...d4Q m, (3) 

in which x i -= (ri,ai), the positional and spin coordin- 
ates of electron i; Qj - (Rj,27j), the positional and spin 
coordinates of nucleus j ;  x -- (Xl,...XL), O -- 
(Q~,...QM), R -- (R1,...RM). ~Vra(X,O) is the state 
function representing state I m). The state function is a 
solution to a many-particle stationary-state 
Schr6dinger equation, the Hamiltonian of which 
includes the kinetic energy of the nuclei. ~Vm(X,O) is 
chosen to normalize to unity. 
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For a canonical ensemble, the probability of being in 
a state I m) is given by the Boltzmann factor 

W m = e x p ( - - E m / k T ) / y  e x p ( - - E i / k T  ), (4) 
t 

in which E m is the energy of state Ira) of the crystal. 
The summation extends over all states included in the 
canonical ensemble representing the crystal. 

The canonical electron density is then given by 

p(r) = Y Wm Pro(r). (S) 
m 

In a previous paper on the vibrational average of 
X-ray scattering intensities (Stewart, 1977), the formal 
difference was noted between the procedure in which 
the Boltzmann weighting factor is applied to the 
electron density Pm and the one in which this factor is 
applied to the intensity of the X-rays scattered 
elastically by the crystal in a particular quantum state. 
At that time there appeared no simple relation between 
the two expressions, neither could the relation to 
observable quantities be firmly established. 

The present paper is a theoretical investigation on 
relations between molecular and crystal vibrational 
states and X-ray scattering. It will be shown that the 
usual procedure in which the intensity of elastic X-ray 
scattering is related to the thermal-average electron 
density is formally incorrect, but of little consequence 
for a macroscopic system. 

We restrict the discussion to kinematic scattering 
where the X-ray photon undergoes a single scattering 
process by the target before being measured. 

Total and elastic X-ray scattering 

In the X-ray scattering process, relatively weak 
interaction takes place between a radiation field and the 
scattering system. 

Without interaction, the radiation field consists of the 
beam of photons emerging from the monochromator, 
all with the same direction and energy. The scattering 
system of electrons and nuclei is in a state Im). With 
interaction, the radiation field will still mainly consist of 
the primary beam, but photons proceeding in other 
directions appear. If the scattering system remains in 
the same energy state, the scattered photons will have 
the same energy as the incident photons and the 
scattering is called elastic. In general, elastic scattering 
is accompanied by inelastic scattering in which the 
scattering system has gone to another energy state. 

In the case of weak interaction, the first Born 
approximation suffices to describe the process. This 
theory, known by crystallographers as kinematic 
scattering, leads to Fermi's Golden Rule (Alonso & 
Valk, 1973), which forms the basis of our discussion: 

W =  ( 2 n / h ) l ( f l ~ U ' l i ) l  2 p(og) Ao9 AI2. (6) 

W is the probability that in a unit of time a transition 
takes place from the initial state li) to any of the final 
states I f ) ,  whereby energy is conserved. The initial 
state li) can be represented by Im,k0) in which Im) 
describes the scattering system and k 0 is the wave 
vector of the incident beam [Ikol = (2zt/2o)]. The final 
states I f )  are described similarly by In,k~). Only those 
final states are included in which the scattered photons 
move in the direction of the counter and have an energy 
between co and co + Aog. With a small counter opening, 
all these final states of the radiation field can be 
characterized by k r p(og)AogAO gives the number of 
radiation modes in the solid angle A.Q subtended by the 
counter and in the frequency range Ao9 that is included 
in the measurement, d/~'' is the Hamiltonian describing 
the interaction between the X-rays and the scattering 
system. 

By starting from this expression we do not include 
effects of extinction or anomalous scattering. The 
matrix term can be developed by introducing 

~ '  = ~ (e2/2m) A2(rj), 
J 

where A(r:) is the vector potential at the position of 
electron j. e and m are the electronic charge and mass 
respectively. This expression reflects the fact that only 
electrons contribute appreciably to the scattering of the 
X-rays. 

A discussion of the Hamiltonian and a derivation of 
the resulting expression can be found in Feil (1977). 
The transition probability W is proportional to the 
intensity measured by the counter. The final expression 
for the intensity contains the (in)elastic form factors 
Fnm(K), 

L 

rnm(K)  = Z (nle+iK''jlm) 
j = l  

L 

= Z f !~r~, (x,O) e+iK''j 
j= l  

X ~¢m(x,Q) d4Lx d4MO. (7) 

Since in the first Born approximation the sign of the 
exponent of (7) does not play a role, it has been chosen 
so as to conform to the usage of most textbooks on 
X-ray diffraction. 

The intensity scattered into the counter by a 
scatterer in state Im) is then given by 

It tin). = I o a ~. IF, m(K)l 2 ota, • (8) 
n 

I 0 is the intensity of the incident beam; a is defined as 
(e2/4zce0 me 2 r) 2 (ek0. ek,) z, in which r is the distance from 
the scattering system to the counter, e~ and el,, are the 
directions of polarization of the incident beam and 
diffracted beam respectively. If we average over all 
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directions of polarization, the result will be the usual 
polarization factor. All other terms have their defined 
or normal meaning. J. J. Thomson found I 0 o to be the 
intensity scattered by a free electron according to 
classical electromagnetic theory (Thomson & Thom- 
son, 1933). 

In general, the target is in thermal contact with its 
surroundings, in which case the ensemble average of 
scattering by different states I m) has to be taken, 

/total ~. Wm f<m) (9) = ~ t o t a l "  
m 

We incorporate the Thomson factor o and the intensity 
of the incident beam into the left hand side of (7) and 
write simply 

/ t o t a l  = Z mra I(t~t)l = Z Wm Z [Fnm [2. ( 1 O) 
m m n 

In elastic scattering the final state of the scattering 
system is equal to the initial state and we can write 

Ielasti¢ : ~. WmlFmm 12 (11) 
m 

and, consequently, 

/inelastic : Z Wm Z tFnm [2 (12) 
m n~rn 

We note from (15) that AI(K) is non-negative so that 
/elastic(K) > /Bragg(K). At T =  0, the system is in the 
ground state and in this case/elastic =/Bragg" 

We see from (16) that the elastic, kinematic 
scattering from a target corresponding with an ensem- 
ble that has appreciable populations of the various 
excited vibrational states is not the same as, but always 
larger than, scattering from the mean thermal charge- 
density distribution. The arguments presented up to 
now are perfectly general and hold in any state system 
of electrons and nuclei for which the perturbation 
treatment in (6) is valid. That is, kinematic or single 
scattering of monochromatic X-rays is assumed. 

When the number of particles of a system increases, 
the number of states within a certain energy range goes 
up as well. When the number of degrees of freedom, N, 
becomes very large, most members of the ensemble 
have properties that closely resemble the average 
properties of the ensemble (Hill, 1956). 

In the same way, the fluctuations in the electron- 
density distribution are expected to reduce in relative 
magnitude when the system increases in size. If this is 
true, AI can be neglected for a system as large as a 
crystal or crystallite used in X-ray diffraction. To 
explore this aspect of the problem, we give a detailed 
result for a scattering system in the harmonic approxi- 
mation for nuclear motion. 

Relation between purely elastic and Bragg scattering 

The elastic form factor for state m is given by (7) with 
n = m. The electron density for state m is given by (3). 
So the elastic form factor is related to Pm (r) by 

From(K) = f pm(r)e ÷iK.' d3r. (13) 

From the definition of FBragg (K), given by (1), 

FBragg(K) = ~ WmFmm(K ). (14) 
m 

We see that FBragg(K ) is the thermal average of the 
elastic form factors. The thermally-weighted mean- 
square difference of (13) and (14) is a mean-square 
fluctuation intensity term, 

AI(K) = Z W m l F m m ( K )  - -  Fnragg(K) 12 (15) 
m 

: ~. WmlFmm(K)l 2 -  IFBragg(K)l 2, (15') 
m 

where (15') follows from (14) and the normalization of 
W m as given by (4). From (11) we rewrite (15') as 

Ie,ast,c(K) = Imagg(K) + AI(K).  (16) 

Purely elastic scattering in harmonic theory 

For our purpose it is useful to distinguish between 
vibrational and electronic states. We therefore treat the 
state functions of the system in the adiabatic approxi- 
mation (Born & Huang, 1954) 

~r/m(x,a ) : IFe(x;R)zm(a ). (17) 

We assume in the following that the system remains in 
the electronic ground state, since the fluctuations in 
energy in the case of thermal equilibrium are too small 
to allow for appreciable population of electronically 
excited states. The system is so large, or the tempera- 
ture so high, that many vibrational states of the 
ensemble are appreciably populated. So in (17) ~'e is the 
ground-state electronic wavefunction, which parametri- 
cally depends on the positional parameters of the 
nuclei, R. Zm(O) are the vibrational wavefunctions, 
whereby the adiabatic potential for the nuclei is 
determined by the electronic energy and nuclear 
repulsion. The index m now describes the vibrational 
states. The intensity expression in adiabatic theory can 
be found as follows. From (7) and (17), 

From=f Z're(Q)[ f ~*e(x;R) ~'dK'rj~e(x;R)d4Lx 

X Xm(O) d4nQ. 
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Defining 
L 

F(K;R)  ------ f ~'*(x;R) Z e /K. r j  ~,e(x;R) d4Lx 
J 

--  f p(r; R) e/K' dSr, 

we can write 

From = f Xm* (Q) F(K; Fi) Xm({~) d aM O. 

With (11) and (14), 

(18) 

(19) 

/elastic(K) = Z Wmlf Z'm(Q) F(K; Fi) Xm(Q) d 4M O'l 2, (20) 
m 

IBragg(K) = W~ f z*(O) F(K;Fi) Xm(O) d4MO (21) 

For completeness we include Itotal(K) from (10) 
where only scattering from the manifold of vibrational 
or phonon states is considered 

Itota,(K) = Z Wm Z {; Xn *(o) F(K;R) Xm(Q) d4MOI2 
m /1 

= Z WmY Z *(Q)IF(K;R)I2 Xm({[~) d4mO'(22) 
In 

To obtain the last line use has been made of the closure 
relation. 

Born (1942) has developed an explicit expression for 
(22) within the harmonic approximation. We will follow 
a similar procedure for evaluation of (20) and (21). To 
proceed we introduce the model of rigid pseudo-atoms. 
In this model the electron-density distribution is 
assumed to be the superposition of partial distri- 
butions, each of which is rigid with respect to the 
position of one of the nuclei: 

M 

p(r ;R)= Z pp(r--Rp;Fie). 
p = l  

The form factor for the partial distribution pp is given 
by 

fp(K) -- y pp(r;Fie) e/K.r d3r. 

We define the displacement up by 

Rp= Re + Up. 

Equation (18) can now be written as 
M 

F(K,R) = y fp(K) dK'R~ d K'", 
p = l  

M 

= Z F~(K)dK.",, (23) 
p = l  

in which F~(K) is defined implicitly. 
In the harmonic approximation, the adiabatic poten- 

tial for the nuclei is truncated at the quadratic term for 
a Taylor-series expansion about Fi e. 

With normal coordinates, G0, the nuclear Hamilto- 
nian can then be written: 

N 

J U ( ~ =  ~. ~(~q).  (24) 
q = l  

N is the number of degrees of freedom involved in the 
vibrational motion. This enables us to write 

N 

Xm(O(~) = I-[ xq(m)(~), (25) 
q = l  

in which X(q m) (~q) is the state function describing the qth 
harmonic oscillator when the scattering system is in 
vibration state I m), 

xq(m)(~q) = exp ( -½~)  Hmq((q). (26) 

In (26), H,,,q(~q) is a normalized Hermite polynomial of 
order m. Equation (24) implies that the coefficients of 
the linear transformation relating up to ~q are given by 
(Willis & Pryor, 1975) 

N 

up = m-i v2 Z %(P) ~q, (27) 
q = l  

where the %(p) are normalized according to 

M 

~. e+(p).%,(p) = 6qq, (28) 
p = l  

and mp is the mass of nucleus p. With the introduction 
of (27) into (23), 

M N 

F ( K ; R ) =  Z Fp(K)]-I exp[ iK.%(P)~m-;  1/21" 
p = l  q = l  

Inserting this result in (19) and using (26) we get 

M N 

Fmm= Z F~(K)1-[ f x(qm)(~q) 
p = l  q = l  

x exp[iK.%(p) ~qm-; x/'] z~m~(gq) d~o. (29) 

The integration over Hermite functions was reported by 
Stewart (1977). The result of the introduction of (25) 
into (29) is 

M N 

From = E Pp(K) H exp(--lxm)Lm~(Xm)' (30) 
p = l  q = l  

where 

IK. eq(p)l 2 h 
xm = mp 2~% (31) 

Lmq in (30) is a Laguerre polynomial of order m and 
degree 0. Calculation of Itot~l, using (22), requires the 
calculation of the expectation value of IF(K. R)I 2. The 
same procedure is followed and the result is similar in 
form to (30) [see Stewart, 1977, equation (46)]. 

The derivation of the final expression for the 
intensities can be found in the Appendix. 
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For all three intensity expressions (20), (21) and (22) 
a Debye-Waller temperature factor for each pseudo- 
atom emerges. We therefore introduce 

Fp(K) -- F~(K) exp (--½K + ~'j, K), (32) 

where ~ ,  is the tensor that describes the mean-square 
amplitude of motion for nucleus p (see A 11). 

The intensity expressions are 

/Brags(K) = ~ ~ F*(K) Fp,(K) = Fp(K) , (33) 
p p' 

[elastic(K) = ~. ~. F * ( K )  Fp)(K) I o - 
. p' q= 1 ~ p  

x o9~ ~ j ,  (34) 

N [ K. eq(p) eq 
/total(K) = ~.0 .'~ Fp(K) F*(K) ql-[=l exp [ ~ o9q2 

x j .  (35) 

In (34), Io(x ) is a zeroth order modified Bessel 
function, fl is (kT) -1 and ~q is the mean thermal energy 
for normal mode, or oscillator, q. The explicit formulas 
for ~q and the related function in (34) are 

~q = ½hogq coth (hogq/2kT), (36) 

(--O~q/ Ofl) '/2 = ½hogq csch ( hogq/2k T). (37) 

Note that the product in (35) can be closed into the 
Born (1942) scattering matrix Spp,. 

For low T (hogq >> kT), (37) goes to zero so that I 0 
becomes unity and/elastic ~" /Brags" This feature of (34) 
confirms our conclusions from the general theory 
outlined in the previous section. At high T, for which 
hogq ~ kT, (37) becomes (36). In this case, 

/elastlc(K)r_.oo ~ ~ ~ F*(K) Fp,(K) 
p p' 

X q----ll~ I0 ~ o92 ~ ]. (38) 

It is (38) which becomes interesting and we explore its 
behaviour for N small and large. 

Elastic scattering by a small molecule and by a crystal 

We first consider an oriented diatomic molecule at a 
temperature for which (38) is applicable. The elastic 
scattering is detected when the energy resolution is 
sufficient to resolve the vibrational structure. For the 
single internal vibration the displacements of the atoms 

along the internuclear axis are given by (27): 

u I = m~-l/21 e(l)l 

and 

U 2 = --m21/21 e(2)l ~. 

During the vibration the centre of mass remains 
stationary: 

m~/21e(1)l - mEu21 e(2)l = 0. (39) 

The normalized eigenvectors satisfy (28): 

le(1)l 2 + le(2)lZ= 1. (40) 

Combination of (39) and (40) results in 

le(1)l = ( lxlm,) li2 

and 

le(2)l = (txlm2) ~/2, (41) 

in which/t is the reduced mass of the molecule. 
The mean-square deviation from the equilibrium 

internuclear distance I R I is then found to be 

m 

X122 ~ lU 1 __ U212 = ( ~ / 2 / m  I + ,uU2/m2)2 ~2 =l.t-1 ~/o92. 
(42) 

With (41), we write 

K. e(1) /x 1/2 

m i  
IKt ~/ 

and 
K. e(2) /~1/2 

~ 2  m2 
IKI r/, 

where r/is the direction cosine between the scattering 
vector K and the internuclear axis. 

If we take m~ = m2 for simplicity, (38) can be written 
for our diatomic molecule with a single vibration 

1o(7~x12 r/2), (43) /elastic(K ) = / B r a g g ( K  ) 1 2 K 2 

/Bragg(K) = IFI(K) + F2(K)I 2, (44) 

in which use has been made of (33). 
For K_p_arallel to R (r /= 1), the effect will be largest. 

When ~x1212 K 2 r]2 = 1, I 0 in (43) is 1.27. / e l a s t i c ( K )  is 
then 27% larger than Bragg scattering. The example 
given here serves to illustrate that for a small molecule 
with a few normal modes at a temperature with kT  ~_ 
hogq, the elastic and the Bragg scattering intensities are 
significantly different. 

We now turn to (38), the high-temperature form of 
/elastic, for the case of a large molecule, e.g. a crystal. 
The ~q/(o9ZqV/--~prnp, ) in the argument of the Bessel 
function is the contribution by mode q to the 
mean-square deviation from the equilibrium distance 
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between atoms p and p' ,  l up - up, I 2 ~ x2p,. We seek 
that mode qo for which (~pp,)q0 is a maximum. Then, 
leq(p)l ~_ N -t/2 with N = 3M, and 

.K.eq(p) eq K.eq(p ' ) ]  fiIo q=l "~ ~ / 

N 

< ]-[ Io[IKI2(x2p,)qo/N] 
q = l  

= {Io[[KI2(X~p,)qo/Nl}N 

---- {1 + l[IKIZ(x~p,)qo/g ] S T -  2 + ...}N. (45) 

For N large, (45) is 1 + ¼[IKIZ(x-~..,~ ]Z/N and 
x PP /q'o 

/elastic(K) approaches IBragg(K). Thus we see from the 
reasoning here that A1/IBr.gg ~_ O(N  -1) for N large. So 
for even a very small crystal with 106 normal modes of 
vibration, the relative difference between Ielastie and 
IBragg at high temperature is 10 -6. This is not a 
measurable difference. 

IBragg : W m From , (A 1) 

in which (2) and (14) have been combined. For our 
particular model we found From to be 

N 

From = ~_, F~,(K) 1--[ exp(--½xpq) Lm(Xpq) (30) 
p q = l  

and W m is given by (4). 
The E m in (4) for a system of independent harmonic 

oscillators are 

N 

E m :  ~ g(m) ~q  

q =  1 

where 

e(qm) = hooq(n~,m + ½) = ho)q(mq + ½) = eq m o 

and 

Conclus ion 

For a large collection of atoms in a crystal, purely 
elastic X-ray scattering intensities can be properly 
interpreted as kinematic scattering by a thermally 
averaged charge-density distribution function as long 
as the first Born approximation does not break down. 
For gas-phase scattering by small molecules at high 
temperature the 'elastic' scattering (resolved to within 
vibrational shifts) can be significantly different from 
Bragg scattering. It is emphasized, however, that 
reduction of the elastic intensity to quantum-mech- 
anical charge densities for the equilibrium nuclear 
distribution cannot in general be accomplished with 
harmonic vibration theory as is done in this paper. 
(Moreover, to emphasize a 'conservation' of difficulty 
we point out that as N gets large, the first Born 
approximation breaks down.) The problem of 
dynamical X-ray scattering by a perfect crystal in 
thermal equilibrium with its environment has been 
neither explored nor alluded to in this paper. 

RFS acknowledges support by the Netherlands 
Organization for Advancement of Pure Research 
(ZWO) and by NSF Grant CHE-77-09649. 

N 

Win= 1-I ,,.'(m). 
q = l  

where 

exp (-eq mo/kT ) w(qm) = 

co 

y exp (--co mq/kT) 
mq 

Let Zq = exp ( -hogq/kT)  so that 

co 

w~m) = z ~ / y z~ 7. 
n = 0  

Since Zq < 1, 

W~ m) = (1 - Zq) Z ~ .  

From (A 1), (30), (A2) and (A3), 

X~a~(K) = FgK (1 -- Z~) 
1 

co )1 ~ 
x Z Z'~o L,~(x,q 

and from (11),.(30), (A2) and (A3), 

e-½X~ 

(A2) 

(A3) 

(A4) 

A P P E N D I X  

Sums  over Boltzmann-weighted series 

The following thermal averages have to be calculated: 

co 

/ e last ic  = Z WmIFmm Iz, (11) 
m = 0  

N 

le'astlc : Z Z F~, F~ ~, I-[ ( 1 -- Zq) e@',~ e ~x... 
p p' q =  1 

oo 

x ~, z~qL~(xpq)L,~(xp,  q). (A5) 
mq 

The sums over mq for each normal mode q can be 
closed with the Hille-Hardy formula (Myller-Lebedeff, 
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1907; see also Higher Transcendental Functions, 
1953): 

oo n! 

~ o r ( n  + a + 1) 
L°A(x) L °A (y) Z n 

[ z(x_+y).l 
= (1 - z) - l  exp , (1 -- z) J (xYz)-U2~' 

2(xyz) /2" 
× I,~ [- U-- S ' (A6) 

where I~ is a modified Bessel function of order a. For  
both (A4) and (A5), a is zero. For  (A4) we take y = 0 
so that Ln(0) = I0(0) = 1. Thus, 

oO 

y Z~q Lmq(Xpq) = (1 -- Zq) -t exp [--xpq Zq/(1 -- Zq)] 
mq 

( a7 )  
and 

OO 

~. Zq~ Lm.(Xpq) Lmq(X p, q) 
mq 

= (1 -- Zq)- '  exp [--Zq(xpq + Xp, q)/(1 -- Zq)] 

XIo[ 2(x;qx°'qZq)u2] (A8) 

L j" 
When (A7) is combined with the exponential function 
in (A4) the argument becomes 

-½xpq(1 + Zq)/(1 - Zq) = -½xpq coth (½hogq/kT) (A9) 

and from the definition given to xpq [(31)], (A4) 
becomes, 

Inragg(K) = ~ F~(K) . -  exp 
q = 1 mp 092 

(A10) 

The N product of exponentials in (A10) is an 
exponential of the sum of 3N arguments. This sum can 
be written (Born, 1942) 

~ ( K ' % ( P )  e q % ( p ) ' K ) = K + =  ~ O9 2 ~ ~'pK, ( A l l )  

where ll"p in (A9) is the tensor for the mean-square 
amplitude of motion for nucleus p. This gives us (32) in 
the text. 

A similar reasoning holds for combining the ex- 
ponentials in (A8) with (A5). The argument in the 
modified Bessel function, 10, of (A 8) becomes 

2(xpqxp,q Zq) u2 K.eq(p)  ½hooq csch (½hogq/kT) 

1 - -  Z q  2 

%(p ' ) .  K 
X V / ~ p  ' 

K .  eq (p )  ( - - t ~ q / t ~ )  '/2 

2 o~q 
% ( p ' ) . K  

x v/mp ' (A 12) 

/~= (kT)-'. 

To our knowledge, the product  l-Iq Io(tq) cannot be 
expressed in closed form by some other known 
function. Thus (A 10), (A 11) and (A 12) give (33) and 
(34) in the text. A detailed derivation of (35) by the 
same methods was previously reported (Stewart, 1977). 
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